AKTIVITAS ANTIMIKROBA FRAKSI N-HEKSAN DAN FRAKSI METANOL JAMUR ENDOFIT Trichoderma harzianum NT3 TERHADAP PERTUMBUHAN MIKROBA Staphylococcus aureus, Escherichia coli, MRSA, DAN Candida albicans SECARA IN VITRO
Sari
Kata Kunci
Teks Lengkap:
PDFReferensi
Aqilla, M. J., & Purwaningsi, E. A. (2023). STRATEGI PENINGKATAN SDM PESISIR DALAM PENGELOLAAN LINGKUNGAN HIDUP DAN SUMBER DAYA ALAM. Riset Sains Dan Teknologi Kelautan. https://doi.org/10.62012/sensistek.v6i2.31685
Ashkan, M. F., Younis, S. A., & Elazab, N. T. (2023). Isolation and characterization of Trichoderma harzianum L-methioninase with promising a powerful anticancer. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2023.103870
Ernawati, E., & Jannah, N. (2021). Aktivitas Antimikroba Perasan Daun Kirinyuh (Chromolaena odorata L.) terhadap Candida albicans dan Pseudomonas aeruginosa. Jurnal Kedokteran Dan Kesehatan. https://doi.org/10.24853/jkk.17.2.137-144
Fauziah, F., Ali, H., Ilmiawati, C., Bakhtra, D., Agustin, Z., & Handayani, D. (2022). Inhibitory Activity of α-Glucosidase by the Extract and Fraction of Marine Sponge-Derived Fungus Penicillium citrinum Xt6. Open Access Macedonian Journal of Medical Sciences. https://doi.org/10.3889/oamjms.2022.10167
Gao, Y., Wang, J., Meesakul, P., Zhou, J., Liu, J., Liu, S., Wang, C., & Cao, S. (2024). Cytotoxic Compounds from Marine Fungi: Sources, Structures, and Bioactivity. In Marine Drugs. https://doi.org/10.3390/md22020070
Geng, L., Fu, Y., Peng, X., Yang, Z., Zhang, M., Song, Z., Guo, N., Chen, S., Chen, J., Bai, B., Liu, A., & Ahammed, G. J. (2022). Biocontrol potential of Trichoderma harzianum against Botrytis cinerea in tomato plants. Biological Control. https://doi.org/10.1016/j.biocontrol.2022.105019
Guo, R., Li, G., Zhang, Z., & Peng, X. (2022). Structures and Biological Activities of Secondary Metabolites from Trichoderma harzianum. In Marine drugs. https://doi.org/10.3390/md20110701
Handayani, D., Ananda, N., Artasasta, M. A., Ruslan, R., Fadriyanti, O., & Tallei, T. E. (2019). Antimicrobial activity screening of endophytic fungi extracts isolated from brown algae Padina sp. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2019.90302
Handayani, D., Dwinatrana, K., & Rustini, R. (2022). ANTIBACTERIAL COMPOUND FROM MARINE SPONGE DERIVED FUNGUS Aspergillus sydowii DC08. Rasayan Journal of Chemistry. https://doi.org/10.31788/RJC.2022.1546971
Handayani, D., Rendowati, A., Aminah, I., Ariantari, N. P., & Proksch, P. (2020). Bioactive compounds from marine sponge derived fungus aspergillus unguis WR8. Rasayan Journal of Chemistry. https://doi.org/10.31788/RJC.2020.1345781
I Gusti Agung Istri Agung Pramiari, & Ni Putu Ariantari. (2023). Review: Potensi Jamur Endofit dari Divisi Alga Hijau (Chlorophyta) sebagai Antibakteri beserta Kandungan Senyawa Bioaktifnya. Prosiding Workshop Dan Seminar Nasional Farmasi. https://doi.org/10.24843/wsnf.2022.v02.p59
Ilmiah, J., Fakultas, M., Pendidikan, I., & Vol, U. (2017). Isolasi dan Identifikasi Jamur Endofit pada Kulit Buah Delima Putih (Punica granatum L). Jurnal Ilmiah Mahasiswa Fakultas Keguruan Dan Ilmu Pendidikan Unsyiah.
Kamala, T., Devi, S. I., Sharma, K. C., & Kennedy, K. (2015). Phylogeny and taxonomical investigation of Trichoderma spp. from Indian region of Indo-Burma Biodiversity hot spot region with special reference to Manipur. BioMed Research International. https://doi.org/10.1155/2015/285261
Khumaidi, A., Yustika, Y., & Nugrahani, A. W. (2022). Aktivitas Antibakteri Fraksi Biji (KEBEN) Barringtonia asiatica L. Kurz pada Staphylococcus aureus dan Escherichia coli. Jurnal Sains Farmasi & Klinis. https://doi.org/10.25077/jsfk.9.2.80-87.2022
Kjer, J., Debbab, A., Aly, A. H., & Proksch, P. (2010). Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nature Protocols. https://doi.org/10.1038/nprot.2009.233
Kuncoro, H., & Sugijanto, N. E. (2011). Jamur Endofit, Biodiversitas, Potensi dan Prospek Penggunaannya Sebagai Sumber Bahan Obat Baru. Journal of Tropical Pharmacy and Chemistry. https://doi.org/10.25026/jtpc.v1i3.35
Lalchhandama, K. (2020). Reappraising Fleming’s snot and mould. Science Vision. https://doi.org/10.33493/scivis.20.01.03
Nasution, A. W., Nasution, H. M., Lubis, M. S., & Rahayu, Y. P. (2023). Uji aktivitas antibakteri fraksi n-heksana dan etil asetat daun kecombrang (Etlingera elatior) terhadap Staphylococcus aureus dan Escherichia coli. Journal of Pharmaceutical and Sciences. https://doi.org/10.36490/journal-jps.com.v6i4.228
Noviyanty, Y. (2022). FRAKSINASI DAN SKRINING FRAKSI EKSTRAK ETANOL DAUN BINAHONG (Anredera Cordifolia (Ten) Steenis) DENGAN MENGGUNAKAN METODE KROMATOGRAFI LAPIS TIPIS. Jurnal Ilmiah Pharmacy. https://doi.org/10.52161/jiphar.v9i2.417
Rosari, A., & Yasniwati, Y. (2023). PENGATURAN KEGIATAN USAHA PERIKANAN TANGKAP DI LAUT TERRITORIAL DAN ZONA EKONOMI EKLUSIF INDONESIA (ZEEI) DAN KAPAL TANGKAP IKAN NELAYAN DI PROVINSI SUMATERA BARAT. UNES Law Review. https://doi.org/10.31933/unesrev.v5i4.580
Saifudin, A. (2014). Senyawa Alam Metabolit Sekunder Teori, Konsep, dan Teknik Pemurnian. In Journal of Natural Medicines.
Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. A. (2023). Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. In Healthcare (Switzerland). https://doi.org/10.3390/healthcare11131946
Suhendi, A. (2015). ISOLASI DAN IDENTIFIKASI FLAVONOID DARI DAUN DEWANDARU (Eugenia uniflora L.). Pharmacon: Jurnal Farmasi Indonesia. https://doi.org/10.23917/pharmacon.v12i2.36
Swamy, M. K., & Vasamsetti, B. M. K. (2021). Taxol: Occurrence, chemistry, and understanding its molecular mechanisms. In Paclitaxel: Sources, Chemistry, Anticancer Actions, and Current Biotechnology. https://doi.org/10.1016/B978-0-323-90951-8.00009-6
Tang, K. W. K., Millar, B. C., & Moore, J. E. (2023). Antimicrobial Resistance (AMR). In British Journal of Biomedical Science. https://doi.org/10.3389/bjbs.2023.11387
Triastuti, A. (2020). Fungal endophytes as the source of medicinal natural product. Jurnal Ilmiah Farmasi. https://doi.org/10.20885/jif.vol16.iss1.art6
Wang, J., Peng, Q., Yao, X., Liu, Y., & Zhou, X. (2020). New pestallic acids and diphenylketone derivatives from the marine alga-derived endophytic fungus Pestalotiopsis neglecta SCSIO41403. Journal of Antibiotics. https://doi.org/10.1038/s41429-020-0308-3
Wilson, I. D., & Poole, C. F. (2023). Planar chromatography – Current practice and future prospects. In Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. https://doi.org/10.1016/j.jchromb.2022.123553
Xiao, Z., Zhao, Q., Li, W., Gao, L., & Liu, G. (2023). Strain improvement of Trichoderma harzianum for enhanced biocontrol capacity: Strategies and prospects. In Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2023.1146210
Yang, S. Q., Li, X. M., Li, X., Chi, L. P., & Wang, B. G. (2018). Two new diketomorpholine derivatives and a new highly conjugated ergostane-type steroid from the marine algal-derived endophytic fungus aspergillus alabamensis EN-547. Marine Drugs. https://doi.org/10.3390/md16040114
Zhang, D., Liu, L., & Chen, B. S. (2023). Marine-Derived Fungi as a Valuable Resource for Amylases Activity Screening. Journal of Fungi. https://doi.org/10.3390/jof9070736
DOI: http://dx.doi.org/10.52689/higea.v17i1.665
Refbacks
- Saat ini tidak ada refbacks.
##submission.license.cc.by-nc-sa4.footer##




